z-logo
open-access-imgOpen Access
Nutrient Improvements in Chesapeake Bay: Direct Effect of Load Reductions and Implications for Coastal Management
Author(s) -
Rebecca R. Murphy,
Jennifer Keisman,
Jon Harcum,
Renee R. Karrh,
Mike Lane,
Elgin S. Perry,
Qian Zhang
Publication year - 2021
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/acs.est.1c05388
Subject(s) - estuary , watershed , chesapeake bay , environmental science , nutrient , bay , water quality , hydrology (agriculture) , nutrient management , eutrophication , oceanography , ecology , biology , geology , geotechnical engineering , machine learning , computer science
In Chesapeake Bay in the United States, decades of management efforts have resulted in modest reductions of nutrient loads from the watershed, but the corresponding improvements in estuarine water quality have not consistently followed. Generalized additive models were used to directly link river flows and nutrient loads from the watershed to nutrient trends in the estuary on a station-by-station basis, which allowed for identification of exactly when and where responses are happening. Results show that Chesapeake Bay's total nitrogen and total phosphorus conditions are mostly improving after accounting for variation in freshwater flow. Almost all of these improving nutrient concentrations in the estuary can be explained by reductions in watershed loads entering through 16 rivers and 145 nearby point sources, with the nearby point source reductions being slightly more effective at explaining estuarine nutrient trends. Overall, these two major types of loads from multiple locations across the watershed are together necessary and responsible for the improving estuarine nutrient conditions, a finding that is highly relevant to managing valuable estuarine resources worldwide.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom