z-logo
open-access-imgOpen Access
Decarbonizing the Coal-Fired Power Sector in China via Carbon Capture, Geological Utilization, and Storage Technology
Author(s) -
Ning Wei,
Zunsheng Jiao,
Kevin Ellett,
Anthony Y. Ku,
Shengnan Liu,
Richard S. Middleton,
Xiaochun Li
Publication year - 2021
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/acs.est.1c01144
Subject(s) - coal fired , coal , waste management , carbon capture and storage (timeline) , environmental science , china , carbon fibers , natural resource economics , geology , engineering , computer science , economics , geography , climate change , oceanography , archaeology , algorithm , composite number
Carbon capture, utilization, and storage (CCUS) is a critical technology to realize carbon neutrality target in the Chinese coal-fired power sector, which emitted 3.7 billion tonnes of carbon dioxide in 2017. However, CCUS technology is often viewed as an "alternative technology" option owing to common perceptions of relatively high cost and potential risks. This study indicates that coal power CCUS is likely to be a cost-effective and key technology for helping China reach the ambitious goal of carbon neutrality. This comprehensive, national-scale assessment of CCUS deployment on coal power in China is based on a unique bottom-up approach that includes site selection, coal plant screening, techno-economic analysis, and carbon dioxide source-sink matching. Analysis indicates that, based on 2017 costs and assumptions, more than 70% of coal power plants in this study could be cost-competitive with natural gas-fired power plants, and 22-58% would be cost-competitive with onshore wind generation. These insights suggest that the commercialization of CCUS technology in the coal power sector in China is a viable route toward decarbonizing the economy if a grid price policy similar to that of renewables and natural gas power is applied.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom