Tellurite Adsorption onto Bacterial Surfaces
Author(s) -
Jennifer L. Goff,
Yuwei Wang,
Maxim I. Boyanov,
Qiang Yu,
Kenneth Kemner,
Jeremy B. Fein,
Nathan Yee
Publication year - 2021
Publication title -
environmental science and technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.851
H-Index - 397
eISSN - 1520-5851
pISSN - 0013-936X
DOI - 10.1021/acs.est.1c01001
Subject(s) - adsorption , chemistry , bacillus subtilis , extracellular polymeric substance , extended x ray absorption fine structure , molecule , absorption (acoustics) , bacteria , inorganic chemistry , absorption spectroscopy , biofilm , organic chemistry , materials science , genetics , physics , quantum mechanics , composite material , biology
Tellurium (Te) is an emerging contaminant and its chemical transformation in the environment is strongly influenced by microbial processes. In this study, we investigated the adsorption of tellurite [Te(IV), TeO 3 2- ] onto the common soil bacterium Bacillus subtilis . Thiol-blocking experiments were carried out to investigate the role of cell surface sulfhydryl sites in tellurite binding, and extended X-ray absorption fine structure (EXAFS) spectroscopy was performed to determine the chemical speciation of the adsorbed tellurite. The results indicate that tellurite reacts with sulfhydryl functional groups in the extracellular polymeric substances (EPS) produced by B. subtilis . Upon binding to sulfhydryl sites in the EPS, the Te changes from Te-O bonds to Te-S coordination. Further analysis of the surface-associated molecules shows that the EPS of B. subtilis contain proteins. Removal of the proteinaceous EPS dramatically decreases tellurite adsorption and the sulfhydryl surface site concentration. These findings indicate that sulfhydryl binding in EPS plays a key role in tellurite adsorption on bacterial surfaces.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom