z-logo
open-access-imgOpen Access
Seven Coordinated Molecular Ruthenium–Water Oxidation Catalysts: A Coordination Chemistry Journey
Author(s) -
Roc Matheu,
Mehmed Z. Ertem,
Carolina GimbertSuriñach,
Xavier Sala,
Antoni Llobet
Publication year - 2019
Publication title -
chemical reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 20.528
H-Index - 700
eISSN - 1520-6890
pISSN - 0009-2665
DOI - 10.1021/acs.chemrev.8b00537
Subject(s) - chemistry , ruthenium , catalysis , catalytic cycle , coordination sphere , metal , coordination complex , nanotechnology , water splitting , photocatalysis , organic chemistry , materials science
Molecular water oxidation catalysis is a field that has experienced an impressive development over the past decade mainly fueled by the promise of generation of a sustainable carbon neutral fuel society, based on water splitting. Most of these advancements have been possible thanks to the detailed understanding of the reactions and intermediates involved in the catalytic cycles. Today's best molecular water oxidation catalysts reach turnover frequencies that are orders of magnitude higher than that of the natural oxygen evolving center in photosystem II. These catalysts are based on Ru complexes where at some stage, the first coordination sphere of the metal center becomes seven coordinated. The key for this achievement is largely based on the use of adaptative ligands that adjust their coordination mode depending on the structural and electronic demands of the metal center at different oxidation states accessed within the catalytic cycle. This Review covers the latest and most significant developments on Ru complexes that behave as powerful water oxidation catalysts and where at some stage the Ru metal attains coordination number 7. Further it provides a comprehensive and rational understanding of the different structural and electronic factors that govern the behavior of these catalysts.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom