z-logo
open-access-imgOpen Access
Site-Selective Cross-Coupling of Polyhalogenated Arenes and Heteroarenes with Identical Halogen Groups
Author(s) -
Vignesh Palani,
Melecio A. Perea,
Richmond Sarpong
Publication year - 2021
Publication title -
chemical reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 20.528
H-Index - 700
eISSN - 1520-6890
pISSN - 0009-2665
DOI - 10.1021/acs.chemrev.1c00513
Subject(s) - chemistry , halogen , steric effects , combinatorial chemistry , halogen bond , ligand (biochemistry) , coupling reaction , molecule , computational chemistry , stereochemistry , organic chemistry , catalysis , biochemistry , alkyl , receptor
Methods to functionalize arenes and heteroarenes in a site-selective manner are highly sought after for rapidly constructing value-added molecules of medicinal, agrochemical, and materials interest. One effective approach is the site-selective cross-coupling of polyhalogenated arenes bearing multiple, but identical, halogen groups. Such cross-coupling reactions have proven to be incredibly effective for site-selective functionalization. However, they also present formidable challenges due to the inherent similarities in the reactivities of the halogen substituents. In this Review, we discuss strategies for site-selective cross-couplings of polyhalogenated arenes and heteroarenes bearing identical halogens, beginning first with an overview of the reaction types that are more traditional in nature, such as electronically, sterically, and directing-group-controlled processes. Following these examples is a description of emerging strategies, which includes ligand- and additive/solvent-controlled reactions as well as photochemically initiated processes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom