
Osmium Atoms and Os2 Molecules Move Faster on Selenium-Doped Compared to Sulfur-Doped Boronic Graphenic Surfaces
Author(s) -
Anaïs PittoBarry,
Johanna Tran,
Simon E. F. Spencer,
Adam M. Johansen,
Ana M. Sanchez,
Andrew P. Dove,
Rachel K. O’Reilly,
Robert J. Deeth,
Richard Beanland,
Peter J. Sadler
Publication year - 2015
Publication title -
chemistry of materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.741
H-Index - 375
eISSN - 1520-5002
pISSN - 0897-4756
DOI - 10.1021/acs.chemmater.5b01853
Subject(s) - osmium , atom (system on chip) , doping , molecule , crystallography , metal , selenium , materials science , sulfur , atoms in molecules , chemistry , ruthenium , metallurgy , organic chemistry , optoelectronics , catalysis , computer science , embedded system
We deposited Os atoms on S- and Se-doped boronic graphenic surfaces by electron bombardment of micelles containing 16e complexes [Os(p-cymene)(1,2-dicarba-closo-dodecarborane-1,2-diselenate/dithiolate)] encapsulated in a triblock copolymer. The surfaces were characterized by energy-dispersive X-ray (EDX) analysis and electron energy loss spectroscopy of energy filtered TEM (EFTEM). Os atoms moved ca. 26× faster on the B/Se surface compared to the B/S surface (233 ± 34 pm·s(-1) versus 8.9 ± 1.9 pm·s(-1)). Os atoms formed dimers with an average Os-Os distance of 0.284 ± 0.077 nm on the B/Se surface and 0.243 ± 0.059 nm on B/S, close to that in metallic Os. The Os2 molecules moved 0.83× and 0.65× more slowly than single Os atoms on B/S and B/Se surfaces, respectively, and again markedly faster (ca. 20×) on the B/Se surface (151 ± 45 pm·s(-1) versus 7.4 ± 2.8 pm·s(-1)). Os atom motion did not follow Brownian motion and appears to involve anchoring sites, probably S and Se atoms. The ability to control the atomic motion of metal atoms and molecules on surfaces has potential for exploitation in nanodevices of the future.