
Role of Molecular Recognition in l -Cystine Crystal Growth Inhibition
Author(s) -
Laura N. Poloni,
Zhi Wei Zhu,
Nelson García-Vázquez,
Anthony C. Yu,
David M. Connors,
Longqin Hu,
Amrik Sahota,
Michael D. Ward,
Alexander G. Shtukenberg
Publication year - 2017
Publication title -
crystal growth and design
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.966
H-Index - 155
eISSN - 1528-7505
pISSN - 1528-7483
DOI - 10.1021/acs.cgd.7b00236
Subject(s) - cystine , crystal (programming language) , chemistry , molecule , crystallography , biochemistry , cysteine , enzyme , organic chemistry , computer science , programming language
l-Cystine kidney stones-aggregates of single crystals of the hexagonal form of l-cystine-afflict more than 20 000 individuals in the United States alone. Current therapies are often ineffective and produce adverse side effects. Recognizing that the growth of l-cystine crystals is a critical step in stone pathogenesis, real-time in situ atomic force microscopy of growth on the (0001) face of l-cystine crystals and measurements of crystal growth anisotropy were performed in the presence of prospective inhibitors drawn from a 31-member library. The most effective molecular imposters for crystal growth inhibition were l-cystine mimics (aka molecular imposters), particularly l-cystine diesters and diamides, for which a kinetic analysis revealed a common inhibition mechanism consistent with Cabrera-Vermilyea step pinning. The amount of inhibitor incorporated by l-cystine crystals, estimated from kinetic data, suggests that imposter binding to the {0001} face is less probable than binding of l-cystine solute molecules, whereas imposter binding to {101̅0} faces is comparable to that of l-cystine molecules. These estimates were corroborated by computational binding energies. Collectively, these findings identify the key structural factors responsible for molecular recognition between molecular imposters and l-cystine crystal kink sites, and the inhibition of crystal growth. The observations are consistent with the reduction of l-cystine stone burden in mouse models by the more effective inhibitors, thereby articulating a strategy for stone prevention based on molecular design.