z-logo
open-access-imgOpen Access
Metabolite Responsive Nanoparticle–Protein Complex
Author(s) -
Krista R Fruehauf,
Tae Il Kim,
Edward L. Nelson,
Joseph P. Patterson,
SzuWen Wang,
Kenneth J. Shea
Publication year - 2019
Publication title -
biomacromolecules
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.689
H-Index - 220
eISSN - 1526-4602
pISSN - 1525-7797
DOI - 10.1021/acs.biomac.9b00470
Subject(s) - metabolite , chemistry , lactate dehydrogenase , biophysics , nanoparticle , biochemistry , polymer , bioavailability , copolymer , combinatorial chemistry , enzyme , nanotechnology , pharmacology , organic chemistry , materials science , biology
Stimuli-responsive polymers are an efficient means of targeted therapy. Compared to conventional agents, they increase bioavailability and efficacy. In particular, polymer hydrogel nanoparticles (NPs) can be designed to respond when exposed to a specific environmental stimulus such as pH or temperature. However, targeting a specific metabolite as the trigger for stimuli response could further elevate selectivity and create a new class of bioresponsive materials. In this work we describe an N-isopropylacrylamide (NIPAm) NP that responds to a specific metabolite, characteristic of a hypoxic environment found in cancerous tumors. NIPAm NPs were synthesized by copolymerization with an oxamate derivative, a known inhibitor of lactate dehydrogenase (LDH). The oxamate-functionalized NPs (OxNP) efficiently sequestered LDH to produce an OxNP-protein complex. When exposed to elevated concentrations of lactic acid, a substrate of LDH and a metabolite characteristic of hypoxic tumor microenvironments, OxNP-LDH complexes swelled (65%). The OxNP-LDH complexes were not responsive to structurally related small molecules. This work demonstrates a proof of concept for tuning NP responsiveness by conjugation with a key protein to target a specific metabolite of disease.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here