z-logo
open-access-imgOpen Access
Engineering Elastin-Like Polypeptide-Poly(ethylene glycol) Multiblock Physical Networks
Author(s) -
Andreia Araújo,
Bradley D. Olsen,
A. V. Machado
Publication year - 2017
Publication title -
biomacromolecules
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.689
H-Index - 220
eISSN - 1526-4602
pISSN - 1525-7797
DOI - 10.1021/acs.biomac.7b01424
Subject(s) - self healing hydrogels , copolymer , ethylene glycol , polymer , polymer chemistry , chemical engineering , nanoscopic scale , glass transition , materials science , macromolecule , peg ratio , salt (chemistry) , micelle , chemistry , small angle x ray scattering , aqueous solution , nanotechnology , organic chemistry , scattering , composite material , biochemistry , physics , finance , optics , engineering , economics
Hybrids of protein biopolymers and synthetic polymers are a promising new class of soft materials, as the advantages of each component can be complementary. A recombinant elastin-like polypeptide (ELP) was conjugated to poly(ethylene glycol) (PEG) by macromolecular coupling in solution to form multiblock ELP-PEG copolymers. The hydrated copolymer preserved the thermoresponsive properties from the ELP block and formed hydrogels with different transition temperatures depending on salt concentration. Small angle scattering indicates that the copolymer hydrogels form sphere-like aggregates with a "fuzzy" interface, while the films form a fractal network of nanoscale aggregates. The use of solutions with different salt concentrations to prepare the hydrogels was found to influence the transition temperature, the mechanical properties, and the size of the nanoscale structure of the hydrogel without changing the secondary structure of the ELP. The salt variation and the addition of a plasticizer also affected the nanoscale structure and the mechanical characteristics of the films.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom