Injectable, Guest–Host Assembled Polyethylenimine Hydrogel for siRNA Delivery
Author(s) -
Leo Wang,
Jan. Sloand,
Ann C. Gaffey,
Chantel M. Venkataraman,
Zhichun Wang,
Alen Trubelja,
Daniel A. Hammer,
Pavan Atluri,
Jason A. Burdick
Publication year - 2016
Publication title -
biomacromolecules
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.689
H-Index - 220
eISSN - 1526-4602
pISSN - 1525-7797
DOI - 10.1021/acs.biomac.6b01378
Subject(s) - polyethylenimine , gene silencing , transfection , small interfering rna , self healing hydrogels , chemistry , polyethylene glycol , biophysics , rna interference , peg ratio , green fluorescent protein , microbiology and biotechnology , rna , biochemistry , polymer chemistry , biology , gene , finance , economics
While siRNA has tremendous potential for therapeutic applications, advancement is limited by poor delivery systems. Systemically, siRNAs are rapidly degraded, may have off-target silencing, and necessitate high working concentrations. To overcome this, we developed an injectable, guest-host assembled hydrogel between polyethylenimine (PEI) and polyethylene glycol (PEG) for local siRNA delivery. Guest-host modified polymers assembled with siRNAs to form polyplexes that had improved transfection and viability compared to PEI. At higher concentrations, these polymers assembled into shear-thinning hydrogels that rapidly self-healed. With siRNA encapsulation, the assemblies eroded as polyplexes which were active and transfected cells, observed by Cy3-siRNA uptake or GFP silencing in vitro. When injected into rat myocardium, the hydrogels localized polyplex release, observed by uptake of Cy5.5-siRNA and silencing of GFP for 1 week in a GFP-expressing rat. These results illustrate the potential for this system to be applied for therapeutic siRNA delivery, such as in cardiac pathologies.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom