z-logo
open-access-imgOpen Access
Single-Point Mutations in Qβ Virus-like Particles Change Binding to Cells
Author(s) -
Marisa L Martino,
Stephen N. Crooke,
Marianne Manchester,
M. G. Finn
Publication year - 2021
Publication title -
biomacromolecules
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.689
H-Index - 220
eISSN - 1526-4602
pISSN - 1525-7797
DOI - 10.1021/acs.biomac.1c00443
Subject(s) - lysine , chemistry , glutamine , biophysics , glutamic acid , biochemistry , capsid , amino acid , mutant , histidine , point mutation , cell , tryptophan , phenylalanine , cytoplasm , biology , gene
Virus-like particles (VLPs) constitute large, polyvalent platforms onto which a wide variety of functional units can be grafted. Their use in biological settings often depends on their specific binding to cells or receptors of interest; this can be compromised by excessive nonspecific association with other cells. We found that lysine residues mediate such nonspecific interactions, presumably by virtue of protonation and interaction with anionic membrane lipid headgroups and/or complementary residues of cell surface proteins and polysaccharides. Chemical acylation of surface-exposed amines of the Qβ VLP led to a significant reduction in the association of particles with mammalian cells. Single-point mutations of particular lysine residues to either glutamine, glutamic acid, tryptophan, or phenylalanine were mostly well-tolerated and formed intact capsids, but the introduction of double and triple mutants was far less forgiving. Introduction of glutamic acid at position 13 (K13E) led to a dramatic increase in cellular binding, whereas removal of the lysine at position 46 (K46Q) led to an equally striking reduction. Several plasma membrane components were found to specifically interact with the Qβ capsid irrespective of surface charge. These results suggest that specific cellular interactions are engaged or obviated by such mutations and provide us with more "benign" particles to which can be added binding functionality for targeted delivery applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here