z-logo
open-access-imgOpen Access
Nucleic Acid Conformation Influences Postsynthetic Suzuki–Miyaura Labeling of Oligonucleotides
Author(s) -
Manisha B. Walunj,
Seergazhi G. Srivatsan
Publication year - 2020
Publication title -
bioconjugate chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.279
H-Index - 172
eISSN - 1520-4812
pISSN - 1043-1802
DOI - 10.1021/acs.bioconjchem.0c00466
Subject(s) - nucleic acid , chemistry , oligonucleotide , combinatorial chemistry , dna , nucleic acid structure , context (archaeology) , nucleic acid analogue , chemical modification , rna , biochemistry , nucleic acid thermodynamics , stereochemistry , base sequence , paleontology , biology , gene
Chemoselective transformations that work under physiological conditions have emerged as powerful tools to label nucleic acids in cell-free and cellular environments. However, detailed studies investigating the influence of nucleic acid conformation on the performance of such chemoselective nucleic labeling methods are less explored. Given that nucleic acids adopt complex structures, it is highly important to study the scope of the chemical modification method in the context of nucleic acid conformations. Here we report a systematic study on the effect of local conformation on the postsynthetic Suzuki-Miyaura functionalization of human telomeric (H-Telo) DNA repeat oligonucleotide (ON) sequences, which form multiple G-quadruplex (GQ) structures. 5-Iodo-2'-deoxyuridine (IdU)-modified H-Telo ONs were synthesized by the solid-phase method, and when subjected to Suzuki-Miyaura cross-coupling reaction, its efficiency was found to depend on the type of conformation and the position of IdU label in different loops of the GQ structure. IdU-labeled GQs gave better yields as compared to single-stranded random coil structures. However, the IdU-labeled duplex under different ionic conditions did not undergo the coupling reaction. Further, using this method, we directly installed an environment-sensitive fluorescent probe, which photophysically reported the formation as well as distinguished different GQ topologies of telomeric repeat. Collectively, this systematic study underscores the influence of nucleic acid conformation, which has to be taken into account when establishing postsynthetic chemoselective functionalization strategies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here