z-logo
open-access-imgOpen Access
Comparison of Cross-Regulation by Different OTUB1:E2 Complexes
Author(s) -
Lauren T. Que,
Marie E. Morrow,
Cynthia Wolberger
Publication year - 2020
Publication title -
biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.43
H-Index - 253
eISSN - 1520-4995
pISSN - 0006-2960
DOI - 10.1021/acs.biochem.9b00993
Subject(s) - deubiquitinating enzyme , ubiquitin , thioester , enzyme , chemistry , microbiology and biotechnology , stimulation , in vitro , biochemistry , biology , gene , neuroscience
OTUB1 is a highly expressed cysteine protease that specifically cleaves K48-linked polyubiquitin chains. This unique deubiquitinating enzyme (DUB) can bind to a subset of E2 ubiquitin conjugating enzymes, forming complexes in which the two enzymes can regulate one another's activity. OTUB1 can noncatalytically suppress the ubiquitin conjugating activity of its E2 partners by sequestering the charged E2∼Ub thioester and preventing ubiquitin transfer. The same E2 enzymes, when uncharged, can stimulate the DUB activity of OTUB1 in vitro , although the importance of OTUB1 stimulation in vivo remains unclear. To assess the potential balance between these activities that might occur in cells, we characterized the kinetics and thermodynamics governing the formation and activity of OTUB1:E2 complexes. We show that both stimulation of OTUB1 by E2 enzymes and noncatalytic inhibition of E2 enzymes by OTUB1 occur at physiologically relevant concentrations of both partners. Whereas E2 partners differ in their ability to stimulate OTUB1 activity, we find that this variability is not correlated with the affinity of each E2 for OTUB1. In addition to UBE2N and the UBE2D isoforms, we find that OTUB1 inhibits the polyubiquitination activity of all three UBE2E enzymes, UBE2E1, UBE2E2, and UBE2E3. Interestingly, although OTUB1 also inhibits the auto-monoubiquitination and autopolyubiquitination activity of UBE2E1 and UBE2E2, it is unable to suppress autoubiquitination by UBE2E3. Our quantitative analysis provides a basis for further exploring the biological roles of OTUB1:E2 complexes in cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here