z-logo
open-access-imgOpen Access
q and the Phospholipase Cβ3 X–Y Linker Regulate Adsorption and Activity on Compressed Lipid Monolayers
Author(s) -
Brian. Hudson,
Rachel E. Jessup,
Keshav Prahalad,
Angeline M. Lyon
Publication year - 2019
Publication title -
biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.43
H-Index - 253
eISSN - 1520-4995
pISSN - 0006-2960
DOI - 10.1021/acs.biochem.9b00441
Subject(s) - monolayer , linker , adsorption , chemistry , crystallography , phospholipase , stereochemistry , biophysics , biochemistry , enzyme , biology , organic chemistry , computer science , operating system
Phospholipase Cβ (PLCβ) enzymes are peripheral membrane proteins required for normal cardiovascular function. PLCβ hydrolyzes phosphatidylinositol 4,5-bisphosphate, producing second messengers that increase intracellular Ca 2+ level and activate protein kinase C. Under basal conditions, PLCβ is autoinhibited by its C-terminal domains and by the X-Y linker, which contains a stretch of conserved acidic residues required for interfacial activation. Following stimulation of G protein-coupled receptors, the heterotrimeric G protein subunit Gα q allosterically activates PLCβ and helps orient the activated complex at the membrane for efficient lipid hydrolysis. However, the molecular basis for how the PLCβ X-Y linker, its C-terminal domains, Gα q , and the membrane coordinately regulate activity is not well understood. Using compressed lipid monolayers and atomic force microscopy, we found that a highly conserved acidic region of the X-Y linker is sufficient to regulate adsorption. Regulation of adsorption and activity by the X-Y linker also occurs independently of the C-terminal domains. We next investigated whether Gα q -dependent activation of PLCβ altered interactions with the model membrane. Gα q increased PLCβ adsorption in a manner that was independent of the PLCβ regulatory elements and targeted adsorption to specific regions of the monolayer in the absence of the C-terminal domains. Thus, the mechanism of Gα q -dependent activation likely includes a spatial component.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom