z-logo
open-access-imgOpen Access
Crystal Structure of d-Ornithine/d-Lysine Decarboxylase, a Stereoinverting Decarboxylase: Implications for Substrate Specificity and Stereospecificity of Fold III Decarboxylases
Author(s) -
Robert S. Phillips,
Pafe Poteh,
Donovan Krajcovic,
Katherine A. Miller,
Timothy R. Hoover
Publication year - 2019
Publication title -
biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.43
H-Index - 253
eISSN - 1520-4995
pISSN - 0006-2960
DOI - 10.1021/acs.biochem.8b01319
Subject(s) - ornithine decarboxylase , stereospecificity , lysine , lysine decarboxylase , chemistry , carboxy lyases , biochemistry , substrate specificity , substrate (aquarium) , enzyme , biology , amino acid , catalysis , putrescine , cadaverine , ecology
A newly discovered Fold III pyridoxal 5'-phosphate (PLP)-dependent decarboxylase, d-ornithine/lysine decarboxylase (DOKDC), catalyzes decarboxylation of d-lysine and d-ornithine with inversion of stereochemistry. The X-ray crystal structure of DOKDC has been determined to 1.72 Å. DOKDC has a low level of sequence identity (<30%) with meso-diaminopimelate decarboxylase (DAPDC) and l-lysine/ornithine decarboxylase (LODC), but its three-dimensional structure is very similar. The distal binding site of DAPDC contains a conserved arginine that forms an ion pair with the l-carboxylate end of DAP. In both LODC and DOKDC, this distal site is modified by replacement of the arginine with aspartate, changing the substrate specificity. l-Ornithine decarboxylase (ODC) and LODC have a conserved phenylalanine on the re-face of the PLP complex that has been found to play a key role in the decarboxylation mechanism. We have found that both DAPDC and DOKDC have tyrosine instead of phenylalanine at this position, which precludes the binding of l-amino acids. Because the PLP-binding lysine in ODC, LODC, DAPDC, and DOKDC is located on the re-face of the PLP, we propose that this is the acid group responsible for protonation of the product, thus resulting in the observed retention of configuration for decarboxylation of l-amino acids and inversion for decarboxylation of d-amino acids. The reactions of DAPDC and DOKDC are likely accelerated by positive electrostatics on the re-face by the lysine ε-ammonium ion and on the si-face by closure of the lid over the active site, resulting in desolvation and destabilization of the d-amino acid carboxylate.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom