z-logo
open-access-imgOpen Access
Structure-Guided Analyses of a Key Enzyme Involved in the Biosynthesis of an Antivitamin
Author(s) -
Iti Kapoor,
Satish K. Nair
Publication year - 2018
Publication title -
biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.43
H-Index - 253
eISSN - 1520-4995
pISSN - 0006-2960
DOI - 10.1021/acs.biochem.8b00576
Subject(s) - active site , chemistry , biosynthesis , aldehyde , stereochemistry , biocatalysis , enzyme , reaction intermediate , reaction mechanism , amine gas treating , biochemistry , catalysis , organic chemistry
RosB catalyzes the formation of 8-aminoriboflavin 5'-phosphate (AFP), the key intermediate in roseoflavin biosynthesis, from the metabolic precursors riboflavin 5'-phosphate (RP, also known as FMN) and glutamate. The conversion of the aromatic methyl group at position 8 in RP into the aromatic amine in AFP occurs via two intermediates, namely, the aldehyde 8-formyl-RP and the acid 8-carboxy-RP. To gain insights into the mechanism for this chemically challenging transformation, we utilized a structure-based approach to identify active site variants of RosB that stall the reaction at various points along the reaction coordinate. Crystal structures of individual variants in complex with different reaction intermediates, identified via mass spectroscopic analysis, illuminate conformational changes that occur at the active site during multistep conversion. These studies provide a plausible route for the progression of the reaction and a molecular rationale for the mechanism of this unusual biocatalyst.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom