z-logo
open-access-imgOpen Access
Drugs Modulate Interactions between the First Nucleotide-Binding Domain and the Fourth Cytoplasmic Loop of Human P-Glycoprotein
Author(s) -
Tip W. Loo,
David M. Clarke
Publication year - 2016
Publication title -
biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.43
H-Index - 253
eISSN - 1520-4995
pISSN - 0006-2960
DOI - 10.1021/acs.biochem.6b00233
Subject(s) - nucleotide , drug , cytoplasm , chemistry , cyclic nucleotide binding domain , plasma protein binding , atpase , p glycoprotein , binding site , intracellular , glycoprotein , biochemistry , mechanism of action , microbiology and biotechnology , biology , enzyme , pharmacology , in vitro , multiple drug resistance , gene , antibiotics
Drug substrates stimulate ATPase activity of the P-glycoprotein (P-gp) ATP-binding cassette drug pump by an unknown mechanism. Cross-linking analysis was performed to test if drug substrates stimulate P-gp ATPase activity by altering cross-talk at the first transmission interface linking the drug-binding [intracellular loop 4 (S909C)] and first nucleotide-binding domains [NBD1 (V472C or L443C)]. In the absence of lipid (inactive P-gp), only V472C/S909C showed cross-linking. Drugs blocked V472C/S909C cross-linking. In the presence of lipids (active P-gp), drug substrates promoted only L443C/S909C cross-linking. This suggests that drug substrates stimulate ATPase activity through a conformational change that shifts Ser909 away from Val472 and toward Leu443.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom