On the Track of Long-Range Electron Transfer in B-Type Dye-Decolorizing Peroxidases: Identification of a Tyrosyl Radical by Computational Prediction and Electron Paramagnetic Resonance Spectroscopy
Author(s) -
Kevin Nys,
Paul G. Furtmüller,
Christian Obinger,
Sabine Van Doorslaer,
Vera Pfanzagl
Publication year - 2021
Publication title -
biochemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.43
H-Index - 253
eISSN - 1520-4995
pISSN - 0006-2960
DOI - 10.1021/acs.biochem.1c00129
Subject(s) - chemistry , electron paramagnetic resonance , electron transfer , photochemistry , radical , peroxidase , heme , catalysis , nuclear magnetic resonance , organic chemistry , enzyme , physics
The catalytic activity of dye-decolorizing peroxidases (DyPs) toward bulky substrates, including anthraquinone dyes, phenolic lignin model compounds, or 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), is in strong contrast to their sterically restrictive active site. In two of the three known subfamilies (A- and C/D-type DyPs), catalytic protein radicals at surface-exposed sites, which are connected to the heme cofactor by electron transfer path(s), have been identified. So far in B-type DyPs, there has been no evidence for protein radical formation after activation by hydrogen peroxide. Interestingly, B-type Klebsiella pneumoniae dye-decolorizing peroxidase ( Kp DyP) displays a persistent organic radical in the resting state composed of two species that can be distinguished by W-band electron spin echo electron paramagnetic resonance (EPR) spectroscopy. Here, on the basis of a comprehensive mutational and EPR study of computationally predicted tyrosine and tryptophan variants of Kp DyP, we demonstrate the formation of tyrosyl radicals (Y247 and Y92) and a radical-stabilizing Y-W dyad between Y247 and W18 in Kp DyP, which are unique to enterobacterial B-type DyPs. Y247 is connected to Y92 by a hydrogen bonding network, is solvent accessible in simulations, and is involved in ABTS oxidation. This suggests the existence of long-range electron path(s) in B-type DyPs. The mechanistic and physiological relevance of the reaction mechanism of B-type DyPs is discussed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom