z-logo
open-access-imgOpen Access
Capture of Single Silver Nanoparticles in Nanopore Arrays Detected by Simultaneous Amperometry and Surface-Enhanced Raman Scattering
Author(s) -
JuYoung Kim,
Donghoon Han,
Garrison M. Crouch,
SeungRyong Kwon,
Paul W. Bohn
Publication year - 2019
Publication title -
analytical chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.117
H-Index - 332
eISSN - 1520-6882
pISSN - 0003-2700
DOI - 10.1021/acs.analchem.8b05748
Subject(s) - silver nanoparticle , nanopore , chemistry , raman scattering , raman spectroscopy , amperometry , analytical chemistry (journal) , nanoparticle , electrode , nanoprobe , nanotechnology , electrochemistry , materials science , optics , chromatography , physics
The attoliter volumes and confinement abilities of zero-dimensional nanopore-electrode arrays (NEAs) hold considerable promise for examining the behavior of single nanoparticles. In this work, we use surface-enhanced Raman scattering (SERS) in tandem with amperometry in order to monitor single Ag Raman-sentinel nanoparticles transported to and captured in single nanopores. To that end, highly ordered solid-state NEAs were fabricated to contain periodic arrays of nanopores, each housing a single recessed Au-ring electrode. These were used to electrostatically capture and trap single silver nanoparticles (AgNPs) functionalized with the electrochemically stable Raman reporter, 1,4-bis(2-methylstyryl)benzene (bis-MSB). Transport and capture of the bis-MSB-tagged AgNPs in the nanopores was followed by simultaneous amperometry and SERS signals characteristic of AgNP oxidation and enhanced Raman scattering by bis-MSB at silver-gold hot spots, respectively. The frequency and magnitude of oxidation-current spikes increased with stepwise increases in DC voltage, and characteristic bis-MSB SERS spectra were observed. Under AC excitation, on the other hand, two distinctly different types of SERS signals were observed, independent of frequency and amplitude: (1) strong, transient (<10 s) spectra and (2) slow (>100 s) monotonically diminishing spectra. We hypothesize that the former behavior results from AgNP aggregates, whereas the latter occurs as a result of multiple incomplete AgNP-oxidation events in succession. These results show that attoliter-volume NEAs are competent for acquiring concurrent SERS spectra and for amperometry of single nanoparticles and that together these measurements can illuminate the collision dynamics of nanoparticles in confined environments.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here