Development of an Analytical Method for Estimating Three-Dimensional Distribution of Sediment-Associated Radiocesium at a Reservoir Bottom
Author(s) -
Kotaro Ochi,
Yoshimi Urabe,
Tsutomu Yamada,
Yukihisa Sanada
Publication year - 2018
Publication title -
analytical chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.117
H-Index - 332
eISSN - 1520-6882
pISSN - 0003-2700
DOI - 10.1021/acs.analchem.8b01746
Subject(s) - sediment , liquid scintillation counting , chemistry , dispersion (optics) , radionuclide , human decontamination , soil science , environmental science , geology , radiochemistry , geomorphology , nuclear physics , optics , physics
After the Fukushima Daiichi Nuclear Power Station accident, the distributions of sediment-associated radiocesium were investigated to evaluate the dispersion and accumulation of radiocesium in the reservoir field. To develop an analytical method for measuring the horizontal and vertical distributions of radiocesium on a wide scale, we obtained 253 gamma-ray spectra at the bottoms of 64 ponds in Fukushima during 2014-2016 by using a NaI(Tl) scintillation detector. For visualizing horizontal distribution, the correlation between detector counting rate and radiocesium concentration of the bottom sediment was confirmed. In estimating vertical distribution, the depth profile of sediment-associated radiocesium was found to be correlated to the intensities of scattered and photo peaks. Good agreement was observed between the results of in situ spectrometry and core sampling. These results indicate that the developed method is suitable for understanding the behavior of radiocesium and determining whether decontamination of reservoirs is required.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom