Analysis of HypD Disulfide Redox Chemistry via Optimization of Fourier Transformed ac Voltammetric Data
Author(s) -
Hope Adamson,
Martin Robinson,
Paul S. Bond,
Basem Soboh,
Kathryn Gillow,
Alexandr N. Simonov,
Darrell Elton,
Alan M. Bond,
R. Gary Sawers,
David J. Gavaghan,
Alison Parkin
Publication year - 2016
Publication title -
analytical chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.117
H-Index - 332
eISSN - 1520-6882
pISSN - 0003-2700
DOI - 10.1021/acs.analchem.6b03589
Subject(s) - chemistry , redox , electrochemistry , faradaic current , cyclic voltammetry , voltammetry , analytical chemistry (journal) , combinatorial chemistry , electrode , inorganic chemistry , organic chemistry , electrode potential
Rapid disulfide bond formation and cleavage is an essential mechanism of life. Using large amplitude Fourier transformed alternating current voltammetry (FTacV) we have measured previously uncharacterized disulfide bond redox chemistry in Escherichia coli HypD. This protein is representative of a class of assembly proteins that play an essential role in the biosynthesis of the active site of [NiFe]-hydrogenases, a family of H 2 -activating enzymes. Compared to conventional electrochemical methods, the advantages of the FTacV technique are the high resolution of the faradaic signal in the higher order harmonics and the fact that a single electrochemical experiment contains all the data needed to estimate the (very fast) electron transfer rates (both rate constants ≥ 4000 s -1 ) and quantify the energetics of the cysteine disulfide redox-reaction (reversible potentials for both processes approximately -0.21 ± 0.01 V vs SHE at pH 6). Previously, deriving such data depended on an inefficient manual trial-and-error approach to simulation. As a highly advantageous alternative, we describe herein an automated multiparameter data optimization analysis strategy where the simulated and experimental faradaic current data are compared for both the real and imaginary components in each of the 4th to 12th harmonics after quantifying the charging current data using the time-domain response.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom