
Deep Learning for Reconstructing Low-Quality FTIR and Raman Spectra─A Case Study in Microplastic Analyses
Author(s) -
Josef Brandt,
Karin Mattsson,
Martin Hassellöv
Publication year - 2021
Publication title -
analytical chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.117
H-Index - 332
eISSN - 1520-6882
pISSN - 0003-2700
DOI - 10.1021/acs.analchem.1c02618
Subject(s) - noise (video) , raman spectroscopy , spectral line , chemistry , fourier transform , artificial intelligence , fourier transform infrared spectroscopy , biological system , data processing , pattern recognition (psychology) , computer science , analytical chemistry (journal) , optics , physics , chromatography , quantum mechanics , astronomy , image (mathematics) , biology , operating system
Herein we report on a deep-learning method for the removal of instrumental noise and unwanted spectral artifacts in Fourier transform infrared (FTIR) or Raman spectra, especially in automated applications in which a large number of spectra have to be acquired within limited time. Automated batch workflows allowing only a few seconds per measurement, without the possibility of manually optimizing measurement parameters, often result in challenging and heterogeneous datasets. A prominent example of this problem is the automated spectroscopic measurement of particles in environmental samples regarding their content of microplastic (MP) particles. Effective spectral identification is hampered by low signal-to-noise ratios and baseline artifacts as, again, spectral post-processing and analysis must be performed in automated measurements, without adjusting specific parameters for each spectrum. We demonstrate the application of a simple autoencoding neural net for reconstruction of complex spectral distortions, such as high levels of noise, baseline bending, interferences, or distorted bands. Once trained on appropriate data, the network is able to remove all unwanted artifacts in a single pass without the need for tuning spectra-specific parameters and with high computational efficiency. Thus, it offers great potential for monitoring applications with a large number of spectra and limited analysis time with availability of representative data from already completed experiments.