z-logo
open-access-imgOpen Access
Double Emulsion Picoreactors for High-Throughput Single-Cell Encapsulation and Phenotyping via FACS
Author(s) -
Kara Brower,
Margarita Khariton,
Peter H. Suzuki,
Chris Still,
Gaeun Kim,
Suzanne G. K. Calhoun,
Lei S. Qi,
Bo Wang,
Polly M. Fordyce
Publication year - 2020
Publication title -
analytical chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.117
H-Index - 332
eISSN - 1520-6882
pISSN - 0003-2700
DOI - 10.1021/acs.analchem.0c02499
Subject(s) - microfluidics , chemistry , single cell analysis , nanotechnology , cell , biophysics , cell size , cell sorting , microbiology and biotechnology , biology , materials science , biochemistry
In the past five years, droplet microfluidic techniques have unlocked new opportunities for the high-throughput genome-wide analysis of single cells, transforming our understanding of cellular diversity and function. However, the field lacks an accessible method to screen and sort droplets based on cellular phenotype upstream of genetic analysis, particularly for large and complex cells. To meet this need, we developed Dropception, a robust, easy-to-use workflow for precise single-cell encapsulation into picoliter-scale double emulsion droplets compatible with high-throughput screening via fluorescence-activated cell sorting (FACS). We demonstrate the capabilities of this method by encapsulating five standardized mammalian cell lines of varying sizes and morphologies as well as a heterogeneous cell mixture of a whole dissociated flatworm (5-25 μm in diameter) within highly monodisperse double emulsions (35 μm in diameter). We optimize for preferential encapsulation of single cells with extremely low multiple-cell loading events (<2% of cell-containing droplets), thereby allowing direct linkage of cellular phenotype to genotype. Across all cell lines, cell loading efficiency approaches the theoretical limit with no observable bias by cell size. FACS measurements reveal the ability to discriminate empty droplets from those containing cells with good agreement to single-cell occupancies quantified via microscopy, establishing robust droplet screening at single-cell resolution. High-throughput FACS screening of cellular picoreactors has the potential to shift the landscape of single-cell droplet microfluidics by expanding the repertoire of current nucleic acid droplet assays to include functional phenotyping.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here