
Versatile, Simple-to-Use Microfluidic Cell-Culturing Chip for Long-Term, High-Resolution, Time-Lapse Imaging
Author(s) -
Olivier Frey,
Fabian Rudolf,
Gregor W. Schmidt,
Andreas Hierlemann
Publication year - 2015
Publication title -
analytical chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.117
H-Index - 332
eISSN - 1520-6882
pISSN - 0003-2700
DOI - 10.1021/ac504611t
Subject(s) - microfluidics , chemistry , cell , live cell imaging , nanotechnology , single cell analysis , resolution (logic) , biological system , computer hardware , biomedical engineering , computer science , artificial intelligence , materials science , biology , medicine , biochemistry
Optical long-term observation of individual cells, combined with modern data analysis tools, allows for a detailed study of cell-to-cell variability, heredity, and differentiation. We developed a microfluidic device featuring facile cell loading, simple and robust operation, and which is amenable to high-resolution life-cell imaging. Different cell strains can be grown in parallel in the device under constant or changing media perfusion without cross-talk between the cell ensembles. The culturing chamber has been optimized for use with nonadherent cells, such as Saccharomyces cerevisiae, and enables controlled colony growth over multiple generations under aerobic or anaerobic conditions. Small changes in the layout will make the device also useable with bacteria or mammalian cells. The platform can be readily set up in every laboratory with minimal additional requirements and can be operated without technology training.