z-logo
open-access-imgOpen Access
Achieving Reproducible Performance of Electrochemical, Folding Aptamer-Based Sensors on Microelectrodes: Challenges and Prospects
Author(s) -
Juan Liu,
Samiullah Wagan,
Melissa Dávila Morris,
James B. Taylor,
Ryan J. White
Publication year - 2014
Publication title -
analytical chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.117
H-Index - 332
eISSN - 1520-6882
pISSN - 0003-2700
DOI - 10.1021/ac503407e
Subject(s) - aptamer , microscale chemistry , chemistry , bioanalysis , microelectrode , nanotechnology , electrode , biosensor , passivation , nanoscopic scale , electrochemistry , analyte , layer (electronics) , materials science , chromatography , genetics , mathematics education , mathematics , biology
Combining specific recognition capabilities with the excellent spatiotemporal resolution of small electrodes represents a promising methodology in bioanalytical and chemical sensing. In this paper, we report the development of reproducible electrochemical, aptamer-based (E-AB) sensors on a gold microelectrode platform. Specifically, we develop microscale sensors (25 μm diameter) for two representative small molecule targets-adenosine triphosphate and tobramycin. Furthermore, we report on the challenges encountered at this size scale including small-magnitude signals and interference from the irreversible reduction of dissolved oxygen and present methods to circumvent these challenges. Through the electrochemical deposition of dendritic gold nanostructures, we demonstrate microscale sensors with improved performance by increasing signal-to-noise and consequently sensitivity. Finally, we report on the use of the nonspecific adsorption of serum proteins as an additional layer of surface passivation for stable sensor performance. The sensor development here represents general guidelines for fabricating electrochemical, folding aptamer-based sensors on small-scale electrodes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom