Taylor Dispersion Analysis in Coiled Capillaries at High Flow Rates
Author(s) -
Anna Lewandrowska,
Aldona Majcher,
Anna Ochab-Marcinek,
Marcin Tabaka,
Robert Hołyst
Publication year - 2013
Publication title -
analytical chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.117
H-Index - 332
eISSN - 1520-6882
pISSN - 0003-2700
DOI - 10.1021/ac4007792
Subject(s) - taylor dispersion , chemistry , analyte , capillary action , radius , dispersion (optics) , diffusion , analytical chemistry (journal) , volumetric flow rate , viscosity , flow (mathematics) , gaussian , chromatography , mechanics , thermodynamics , optics , physics , computer security , computer science , computational chemistry
Taylor Dispersion Analysis (TDA) has been performed for analytes moving at high flow rates in long, coiled capillaries. A thin injection zone of the analyte is stretched by the flow and final distribution of concentration of the analyte at the end of the capillary has the gaussian shape. The high flow rates in coiled capillary generate vortices. They convectively mix the analyte across the capillary. This mixing reduces the width of the gaussian distribution several times in comparison to the width obtained in a straight capillary in standard TDA. We have determined an empirical, scaling equation for the width as a function of the flow rate, molecular diffusion coefficient of the analyte, viscosity of the carrier phase, internal radius of the cylindrical capillary, and external radius of the coiled capillary. This equation can be used for different sizes of capillaries in a wide range of parameters without an additional calibration procedure. Our experimental results of flow in the coiled capillary could not be explained by current models based on approximate solutions of the Navier-Stokes equation. We applied the technique to determine the diffusion coefficients of the following analytes: salts, drugs, single amino acids, peptides (from dipeptides to hexapeptides), and proteins.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom