Amphipathic Polymers Enable the Study of Functional Membrane Proteins in the Gas Phase
Author(s) -
Aneika C. Leney,
Lindsay M. McMorran,
Sheena E. Radford,
Alison E. Ashcroft
Publication year - 2012
Publication title -
analytical chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.117
H-Index - 332
eISSN - 1520-6882
pISSN - 0003-2700
DOI - 10.1021/ac302223s
Subject(s) - chemistry , membrane protein , amphiphile , mass spectrometry , membrane , electrospray ionization , polymer , chromatography , biochemistry , organic chemistry , copolymer
Membrane proteins are notoriously challenging to analyze using mass spectrometry (MS) because of their insolubility in aqueous solution. Current MS methods for studying intact membrane proteins involve solubilization in detergent. However, detergents can destabilize proteins, leading to protein unfolding and aggregation, or resulting in inactive entities. Amphipathic polymers, termed amphipols, can be used as a substitute for detergents and have been shown to enhance the stability of membrane proteins. Here, we show the utility of amphipols for investigating the structural and functional properties of membrane proteins using electrospray ionization mass spectrometry (ESI-MS). The functional properties of two bacterial outer-membrane β-barrel proteins, OmpT and PagP, in complex with the amphipol A8-35 are demonstrated, and their structural integrities are confirmed in the gas phase using ESI-MS coupled with ion mobility spectrometry (IMS). The data illustrate the power of ESI-IMS-MS in separating distinct populations of amphipathic polymers from the amphipol-membrane complex while maintaining a conformationally "nativelike" membrane protein structure in the gas phase. Together, the data indicate the potential importance and utility of amphipols for the analysis of membrane proteins using MS.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom