z-logo
open-access-imgOpen Access
Mesoporous TiO2-Based Experimental Layout for On-Target Enrichment and Separation of Multi- and Monophosphorylated Peptides Prior to Analysis with Matrix-Assisted Laser Desorption-Ionization Mass Spectrometry
Author(s) -
Anna I. K. Eriksson,
Jonas Bergquist,
Katarina Edwards,
Anders Hagfeldt,
David Malmström,
Vı́ctor Agmo Hernández
Publication year - 2011
Publication title -
analytical chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.117
H-Index - 332
eISSN - 1520-6882
pISSN - 0003-2700
DOI - 10.1021/ac1027879
Subject(s) - chemistry , mesoporous material , mass spectrometry , desorption , matrix assisted laser desorption/ionization , chromatography , matrix (chemical analysis) , ionization , sample preparation in mass spectrometry , analytical chemistry (journal) , electrospray ionization , ion , organic chemistry , adsorption , catalysis
A simple method for on-target enrichment and subsequent separation and analysis of phosphorylated peptides is presented. The tryptic digest of a phosphorylated protein, in this case β-casein, is loaded onto a spot on a thin stripe made of mesoporous TiO(2) sintered onto a conductive glass surface. After washing with a salicylic buffer in order to remove the nonphosphorylated peptides, the stripe is placed in an elution chamber containing a phosphate solution. In a way analogous to thin layer chromatography (TLC), the phosphate solution acts as an eluent, clearly separating multi- and monophosphorylated peptides. By performing matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS) along the stripe, the detection of all phosphorylated peptides present in the digest is facilitated, as they are isolated from each other. The method was also tested on commercial drinking milk, achieving successful separation between multi- and monophosphorylated peptides, as well as a detection limit in the femtomole range. As the enrichment, separation, and analysis take place in the same substrate, sample handling and risk of contamination and sample loss is minimized. The results obtained suggest that the method, once optimized, may successfully provide a complete phosphoproteome.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom