z-logo
open-access-imgOpen Access
Determination of Methionine and Selenomethionine in Selenium-Enriched Yeast by Species-Specific Isotope Dilution with Liquid Chromatography−Mass Spectrometry and Inductively Coupled Plasma Mass Spectrometry Detection
Author(s) -
Shona McSheehy,
Lu Yang,
Ralph E. Sturgeon,
Zoltán Mester
Publication year - 2004
Publication title -
analytical chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.117
H-Index - 332
eISSN - 1520-6882
pISSN - 0003-2700
DOI - 10.1021/ac048637e
Subject(s) - chemistry , selenium , isotope dilution , chromatography , inductively coupled plasma mass spectrometry , mass spectrometry , yeast , biochemistry , organic chemistry
Selenomethionine (SeMet) and methionine (Met), liberated by acid hydrolysis of selenium-enriched yeast, were quantified by liquid chromatography-mass spectrometry (LC/MS) using standard additions calibrations as well as isotope dilution (ID) based on species-specific (13)C-enriched spikes. LC inductively coupled plasma mass spectrometry (ICPMS) was also employed for the quantification of SeMet, and (74)Se-enriched SeMet was used for ID calibration. The results were evaluated to ascertain the feasibility of using these methods in a campaign to certify selenized yeast. Good agreement was found between the methods, which, when averaged, gave concentrations of 5482.2 +/- 101 and 3256.9 +/- 217.4 microg/g for Met and SeMet, respectively. This corresponds to a 1.68:1 Met-to-SeMet ratio in the yeast. Quantification by ID LC/MS and LC ICPMS yields the most precise sets of results with relative standard deviations in the range 0.5-1.3% (n = 6). A total selenium concentration of 2064.6 +/- 45.4 microg/g was obtained for this yeast material. The extraction efficiency and a mass balance budget were determined. Acid hydrolysis liberated 81.0% of the total selenium present. SeMet comprised 79.0% of the extracted selenium and 63.9% of the total selenium present in the yeast.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom