Multilabeling Biomolecules at a Single Site. 1. Synthesis and Characterization of a Dendritic Label for Electrochemiluminescence Assays
Author(s) -
Ming Zhou,
Jacques Roovers,
Gilles P. Robertson,
Chander P. Grover
Publication year - 2003
Publication title -
analytical chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.117
H-Index - 332
eISSN - 1520-6882
pISSN - 0003-2700
DOI - 10.1021/ac034664d
Subject(s) - electrochemiluminescence , chemistry , biomolecule , combinatorial chemistry , dendrimer , bioanalysis , nanotechnology , molecule , luminescent measurements , small molecule , luminescence , biochemistry , chromatography , detection limit , organic chemistry , materials science , physics , optoelectronics
Ultrasensitive bioanalytical assays are of great value for early detection of human diseases and pathogens. The sensitivities of immunoassays and DNA probing can be enhanced by multilabeling the biorecognition partner used for affinity-based assays. However, the bioreactivity of biomolecules is affected by a high degree of multilabeling at multiple functional sites. It is proposed that dendritic scaffoldings be used to link multiple signal-generating units to a single site with potentially minimum impact on the bioaffinity. A prototype label, a zeroth-generation dendron, bearing three [Ru(bpy)(3)](2+) units for electrochemiluminescence (ECL) assays was synthesized and characterized preliminarily by spectroscopic, electrochemical, and ECL methods. No evidence of interaction between the neighboring [Ru(bpy)(3)](2+) units in the label molecule was found from these characterizations. Both the photoluminescence and ECL of the prototype label have features very similar to those of mononuclear [Ru(bpy)(3)](2+) compounds. Labeling a model protein with a triad of [Ru(bpy)(3)](2+) at one NH(2) position was demonstrated. The results reported here provide support to applying the proposed multilabeling strategy to affinity-based bioanalytical assays.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom