Premium
Detecting K ‐Theory by Cyclic Homology
Author(s) -
Lück Wolfgang,
Reich Holger
Publication year - 2006
Publication title -
proceedings of the london mathematical society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.899
H-Index - 65
eISSN - 1460-244X
pISSN - 0024-6115
DOI - 10.1017/s0024611506015954
Subject(s) - cyclic homology , mathematics , homology (biology) , cellular homology , hochschild homology , morse homology , pure mathematics , mayer–vietoris sequence , relative homology , algebraic number , cyclic group , algebra over a field , genetics , biology , mathematical analysis , amino acid , cohomology , abelian group , de rham cohomology , equivariant cohomology
We discuss which part of the rationalized algebraic K ‐theory of a group ring is detected via trace maps to Hochschild homology, cyclic homology, periodic cyclic or negative cyclic homology. 2000 Mathematics Subject Classification 19D55.