Particle Dispersion Simulation in Turbulent Flow Due to Particle-Particle and Particle-Wall Collisions
Author(s) -
Jia Lin,
KehChin Chang
Publication year - 2015
Publication title -
journal of mechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.27
H-Index - 23
eISSN - 1811-8216
pISSN - 1727-7191
DOI - 10.1017/jmech.2015.63
Subject(s) - particle (ecology) , turbulence , mechanics , collision , dispersion (optics) , magnetosphere particle motion , reynolds number , physics , flow (mathematics) , classical mechanics , optics , geology , computer science , oceanography , computer security , quantum mechanics , magnetic field
Simulation of the 3-D, fully developed turbulent channel flows laden with various mass loading ratios of particles is made using an Eulerian-Lagrangian approach in which the carrier-fluid flow field is solved with a low-Reynolds-number k-ε turbulence model while the deterministic Lagrangian method together with binary-collision hard-sphere model is applied for the solution of particle motion. Effects of inter-particle collisions and particle-wall collisions under different extents of wall roughness on particle dispersion are addressed in the study. A cost-effective searching algorithm of collision pair among particles is developed. It is found that the effects of inter-particle collisions on particle dispersion cannot be negligible when the ratio of the mean free time of particle to the mean particle relaxation time of particle is less or equal to O(10). In addition, the wall roughness extent plays an important role in the simulation of particle-wall collisions particularly for cases with small mass loading ratios.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom