z-logo
open-access-imgOpen Access
Instability wave–streak interactions in a high Mach number boundary layer at flight conditions
Author(s) -
Pedro Paredes,
Meelan M. Choudhari,
Fēi Li
Publication year - 2018
Publication title -
journal of fluid mechanics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.72
H-Index - 226
eISSN - 1469-7645
pISSN - 0022-1120
DOI - 10.1017/jfm.2018.744
Subject(s) - physics , mach number , instability , boundary layer , mechanics , streak , laminar flow , reynolds number , dynamic mode decomposition , mean flow , supersonic speed , classical mechanics , turbulence , optics
The interaction of stationary streaks undergoing nonmodal growth with modally unstable instability waves in a hypersonic boundary-layer flow is studied using numerical computations. The geometry and flow conditions are selected to match a relevant trajectory location from the ascent phase of the HIFiRE-1 flight experiment; namely, a 7 degree half-angle, circular cone with 2.5 mm nose radius, freestream Mach number equal to 5.30, unit Reynolds number equal to 13.42 m -1 , and wall-to-adiabatic temperature ratio of approximately 0.35 over most of the vehicle. This paper investigates the nonlinear evolution of initially linear optimal disturbances that evolve into finite-amplitude streaks, followed by an analysis of the modal instability characteristics of the perturbed, streaky boundary-layer flow. The investigation is performed with stationary direct numerical simulations (DNS) and plane-marching parabolized stability equations (PSE), in conjunction with partial-differential-equation-based planar eigenvalue analysis. The overall effect of streaks is to reduce the peak amplification factors of instability waves, indicating a possible downstream shift in the onset of laminar-turbulent transition. The present study confirms previous findings that the mean flow distorsion of the nonlinear streak perturbation reduces the amplification rates of the Mack-mode instability. More importantly, however, the present results demonstrate that the spanwise varying component of the streak can produce a larger effect on the Mack-mode amplification. The study with selected azimuthal wavenumbers for the stationary streaks reveals that a wavenumber of approximately 1.4 times larger than the optimal wavenumber is more effective in stabilizing the planar Mack-mode instabilities. In the absence of unstable first-mode waves for the present cold-wall condition, transition onset is expected to be delayed until the peak streak amplitude increases to nearly 35 percent of the freestream velocity, when intrinsic instabilities of the boundary-layer streaks begin to dominate the transition process. For streak amplitudes below that limit a significant net stabilization is achieved, yielding a potential transition delay that can exceed 100 percent of the length of the laminar region in the uncontrolled case.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here