Premium
Levels of amino acid neurotransmitters during mouse olfactory bulb neurogenesis and in histotypic olfactory bulb cultures
Author(s) -
MirandaContreras L.,
Ramı́rezMartens L.M.,
Benı́tezDiaz P.R.,
PeñaContreras Z.C.,
MendozaBriceño R.V.,
PalaciosPrü E.L.
Publication year - 2000
Publication title -
international journal of developmental neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.761
H-Index - 88
eISSN - 1873-474X
pISSN - 0736-5748
DOI - 10.1016/s0736-5748(99)00075-1
Subject(s) - olfactory bulb , glutamate receptor , endocrinology , taurine , medicine , neurotransmitter , biology , neurogenesis , period (music) , olfactory system , glycine , excitatory postsynaptic potential , neurotransmission , inhibitory postsynaptic potential , amino acid , neuroscience , biochemistry , central nervous system , receptor , physics , acoustics
The developmental changes in the levels of amino acid neurotransmitters were analyzed by high pressure liquid chromatography during mouse olfactory bulb neurogenesis, from embryonic day (E)13 until the young adult age, between postnatal days (P)30 and P40. During the embryonic period, high levels of glutamate, aspartate and GABA were observed, with the values of GABA about 2‐fold higher than those of glutamate and aspartate. At P0, the production of these neurotransmitters experienced birth stress as shown by a significant 2‐fold reduction in their levels. During the first two postnatal weeks, a progressive increase in the glutamate content was detected diminishing slightly in the adult stage. The aspartate concentrations showed a maximal value at P3 and then decreased gradually until the second postnatal week; in the young adult age, its concentration was comparable with that of glutamate. The postnatal GABA contents increased progressively from birth to maturity, showing maximal levels at P3, P11 and in the adult. Throughout the studied developmental period, the concentration of glycine remained relatively low. With regard to taurine, very low concentrations were detected during the prenatal period but after birth, the taurine content gradually increased with age, and in the adult animal, its concentration was comparable with those of GABA and glutamate. Our data demonstrate the predominance of GABA and glutamate during olfactory bulb synaptogenesis, however, in the adult animal, both glutamate and aspartate exert the same influence in the excitatory synaptic transmission; in the adult inhibitory synaptic transmission, taurine appears to play an important neuromodulatory or neurotransmitter role as that of GABA. To determine the intrinsic neurotransmitter production, primary histotypic olfactory bulb cultures were prepared from mice at P10. The comparative analysis of in vitro neurotransmitter contents with those in in situ adult animal showed higher levels of endogenously produced glutamate, glycine and GABA in the olfactory bulb than the extrinsic ones coming from olfactory nerve axons and higher olfactory brain centers. On the other hand, most of aspartate and taurine neurotransmitters apparently come from extrinsically located neurons.