z-logo
Premium
Healing of full‐thickness tears of avian supracoracoid tendons: in situ hybridization of α1(I) and α1(III) procollagen mRNA
Author(s) -
Kobayashi Kunihiko,
Hamada Kazutoshi,
Gotoh Masafumi,
Handa Akiyoshi,
Yamakawa Hideyuki,
Fukuda Hiroaki
Publication year - 2001
Publication title -
journal of orthopaedic research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.041
H-Index - 155
eISSN - 1554-527X
pISSN - 0736-0266
DOI - 10.1016/s0736-0266(01)00015-8
Subject(s) - in situ hybridization , tears , procollagen peptidase , messenger rna , in situ , biology , microbiology and biotechnology , anatomy , genetics , chemistry , immunology , gene , organic chemistry
Although clinically significant, much remains unknown about the healing of the torn rotator cuff tendon, because of unavailability of appropriate animal model. The human supraspinatus tendon faces the subacromial bursa superiorly, and the joint capsule inferiorly, while the digital flexor tendon is surrounded by the synovium. We hypothesized that the supraspinatus tendon heals by the process which is different from that observed with digital flexor tendons, in which epitenon cells migrate into the torn portion circumferentially. The avian supracoracoid tendon was adopted for this experiment because of its similarity to the human supraspinatus tendon. We developed a full‐thickness tendon laceration followed by primary suture. The objective of this study was to detect localization of the responsible cells for repair of the tendon. We examined the process using histology and in situ hybridization. Starting at week 1, the peritendon cells of the bursal side proliferated and migrated into the laceration site. At week 6, the tendon stumps were continuous with new connective tissue. High‐level expression of procollagen mRNA in the proliferating peritendon cells on the bursal side demonstrates to contribute to the reparative process, which progressed to the joint side. This mode of repair is different from that of the digital flexor tendon. © 2001 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here