Premium
Mutations at specific atp6 codons which cause human mitochondrial diseases also lead to male sterility in a plant
Author(s) -
Kempken Frank,
Howad Werner,
Pring Daryl R.
Publication year - 1998
Publication title -
febs letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.593
H-Index - 257
eISSN - 1873-3468
pISSN - 0014-5793
DOI - 10.1016/s0014-5793(98)01538-5
Subject(s) - biology , point mutation , mitochondrial dna , genetics , cytoplasmic male sterility , sterility , gene , rna , mutation , mitochondrial disease , mitochondrion , stop codon , rna editing , human mitochondrial genetics
Defects in the human mitochondrial genetic system result in some diseases. These disorders are the result of rearrangements or point mutations in mitochondrial genes. In higher plants mutations and rearrangements in the mitochondrial DNA are believed to cause cytoplasmic male sterility (CMS), a mitochondrially inherited inability to produce viable pollen. In sorghum, formation of CMS is strongly correlated with anther‐specific loss of mitochondrial atp6 RNA editing. Here we show that this loss of atp6 RNA editing mimics point mutations at codons that cause severe disorders in humans. We conclude that (i) loss of RNA editing in sorghum anthers probably causes CMS, (ii) similarities exist in the onset of mitochondrial dysfunction in plant and human tissues, and (iii) the evolutionary appearance of RNA editing provided a mechanism to compensate for otherwise lethal point mutations.