Premium
Why do mammalian mitochondria possess a mismatch repair activity?
Author(s) -
Mason P.A.,
Lightowlers R.N.
Publication year - 2003
Publication title -
febs letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.593
H-Index - 257
eISSN - 1873-3468
pISSN - 0014-5793
DOI - 10.1016/s0014-5793(03)01169-4
Subject(s) - mitochondrial dna , genome , biology , mitochondrion , genetics , point mutation , dna , polymerase , mutation , gene , microbiology and biotechnology , computational biology
All nucleated mammalian cells contain mitochondrial DNA, a small (approximately 15–17 kb) circular genome found in the matrix. This molecule is present in multiple copies, with numbers routinely exceeding 1000 per cell. Many pathogenic mutations of this genome have been reported, with the vast majority being highly recessive. A mismatch repair activity has been recently described in mitochondria that shows no strand bias for correcting point mutations. What could be the physiological function of such an activity? Mammalian mtDNA is remarkable in being a patchwork of many short repeat sequences. With reference to several recent publications, we hypothesise that the function of this activity is to preserve the mitochondrial genome by repairing short loop out sequences that would otherwise be lost as mitochondrial DNA polymerase gamma replicates the mitochondrial genome.