Open Access
The aqueous extract from Toona sinensis leaves inhibits microglia‐mediated neuroinflammation
Author(s) -
Wang ChaoChuan,
Tsai YeeJean,
Hsieh YaChing,
Lin RongJyh,
Lin ChihLung
Publication year - 2014
Publication title -
the kaohsiung journal of medical sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.439
H-Index - 36
eISSN - 2410-8650
pISSN - 1607-551X
DOI - 10.1016/j.kjms.2013.09.012
Subject(s) - neuroinflammation , microglia , proinflammatory cytokine , medicine , nitric oxide , tumor necrosis factor alpha , pharmacology , in vivo , lipopolysaccharide , nitric oxide synthase , inflammation , immunology , biology , microbiology and biotechnology
Abstract The leaves of Toona sinensis , a well‐known traditional oriental medicine, have been prescribed for the treatment of enteritis and infection. Recently, aqueous extracts of Toona sinensis leaves (TSL‐1) have demonstrated many biological effects both in vitro and in vivo . In the central nervous system, microglial activation and their proinflammatory responses are considered an important therapeutic strategy for neuroinflammatory disorders such as cerebral ischemia, Alzheimer's disease, and Parkinson's disease. The present study attempted to validate the effect of TSL‐1 on microglia‐mediated neuroinflammation stimulated by lipopolysaccharide (LPS). As inflammatory parameters, the production of nitric oxide (NO), inducible NO synthase, and tumor necrosis factor‐α were evaluated. Our results demonstrate that TSL‐1 suppresses LPS‐induced NO production, tumor necrosis factor‐α secretion, and inducible NO synthase protein expression in a concentration‐dependent manner, without causing cytotoxicity. In addition, the inhibitory effects of TSL‐1 in LPS‐stimulated BV‐2 microglia were extended to post‐treatment suggesting the therapeutic potential of TSL‐1. Therefore, this work provides the future evaluation of the role of TSL‐1 in the treatment of neurodegenerative diseases by inhibition of inflammatory mediator production in activated microglia.