
Sufficiency and duality in nondifferentiable minimax fractional programming with <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.…
Author(s) -
Meraj Ali Khan,
Falleh R. Al-Solamy
Publication year - 2015
Publication title -
journal of the egyptian mathematical society
Language(s) - English
Resource type - Journals
eISSN - 2090-9128
pISSN - 1110-256X
DOI - 10.1016/j.joems.2014.01.010
Subject(s) - converse , minimax , mathematics , duality (order theory) , xml , differentiable function , combinatorics , discrete mathematics , mathematical optimization , computer science , pure mathematics , world wide web , geometry
In the present paper, we discuss the optimality condition for an optimal solution to the problem and a dual model is formulated for a non differentiable minimax fractional programming problem. Weak, strong and strict converse duality results are concerned involving (Hp,r)-invexity