
On a class of nonlocal elliptic systems of <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:…
Author(s) -
Mohammed Massar,
Mohamed Talbi
Publication year - 2014
Publication title -
journal of the egyptian mathematical society
Language(s) - English
Resource type - Journals
eISSN - 2090-9128
pISSN - 1110-256X
DOI - 10.1016/j.joems.2014.01.007
Subject(s) - mathematics , class (philosophy) , xml , type (biology) , computer science , operating system , artificial intelligence , ecology , biology
In this paper, we establish the existence of at least three solutions for the following nonlocal elliptic system of (p,q)-Kirchhoff type -M1∫Ω|∇u|pdxp-1Δpu=λFu(x,u,v)+μGu(x,u,v) in Ω,-M2∫Ω|∇v|qdxq-1Δqv=λFv(x,u,v)+μGv(x,u,v) in Ω,u=v=0 on ∂Ω. Our technical approach is based on the three critical points theorem of Ricceri
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom