z-logo
open-access-imgOpen Access
Mathematical model on pulmonary and multidrug-resistant tuberculosis patients with vaccination
Author(s) -
Bimal Kumar Mishra,
Jyotika Srivastava
Publication year - 2014
Publication title -
journal of the egyptian mathematical society
Language(s) - English
Resource type - Journals
eISSN - 2090-9128
pISSN - 1110-256X
DOI - 10.1016/j.joems.2013.07.006
Subject(s) - tuberculosis , vaccination , disease , medicine , population , environmental health , epidemic model , demography , immunology , pathology , sociology
Tuberculosis is a global epidemic disease and almost two billion people across the globe are infected with the tuberculosis bacilli. Many countries like China, Europe and United States has achieved dramatic decrease in TB mortality rate but country like India is still struggling hard to control this epidemic. Jharkhand one of the states of India is highly epidemic toward this disease. We propose a mathematical model to understand the spread of tuberculosis disease in human population for both pulmonary and drug-resistant subjects. A number of new vaccines are currently in development. Keeping in mind, vaccination as one of the treatment for TB patients may be infant or adult in future; an assumption for the transfer of proportion of susceptible population to the vaccination class is considered. Quarantine class is also considered in our epidemic model for multidrug-resistant patients, and it is observed that it may play a vital role for controlling the disease. Threshold and equilibria are obtained and the condition for epidemic under different conditions of threshold is established. Real parametric values of the Jharkhand state are taken into account to simulate the system developed, and the results so obtained validate our analytical results

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here