
On generalized Jordan ∗-derivation in rings
Author(s) -
Nadeem ur Rehman,
Abu Zaid Ansari,
Tarannum Bano
Publication year - 2014
Publication title -
journal of the egyptian mathematical society
Language(s) - English
Resource type - Journals
eISSN - 2090-9128
pISSN - 1110-256X
DOI - 10.1016/j.joems.2013.04.011
Subject(s) - mathematics , combinatorics , integer (computer science) , torsion (gastropod) , element (criminal law) , ring (chemistry) , discrete mathematics , pure mathematics , medicine , chemistry , surgery , organic chemistry , computer science , political science , law , programming language
Let n⩾1 be a fixed integer and let R be an (n+1)!-torsion free ∗-ring with identity element e. If F, d:R→R are two additive mappings satisfying F(xn+1)=F(x)(x∗)n+xd(x)(x∗)n−1+x2d(x)(x∗)n−2+⋯+xnd(x) for all x∈R, then d is a Jordan ∗-derivation and F is a generalized Jordan ∗-derivation on R