z-logo
open-access-imgOpen Access
Eigenvalues for the Steklov problem via Ljusternic–Schnirelman principle
Author(s) -
G. A. Afrouzi,
M. Mirzapour,
S. Khademloo
Publication year - 2013
Publication title -
journal of the egyptian mathematical society
Language(s) - English
Resource type - Journals
eISSN - 2090-9128
pISSN - 1110-256X
DOI - 10.1016/j.joems.2012.10.006
Subject(s) - mathematics , eigenvalues and eigenvectors , bounded function , domain (mathematical analysis) , sequence (biology) , combinatorics , pure mathematics , mathematical analysis , physics , quantum mechanics , biology , genetics
This paper deals with the existence of nondecreasing sequence of nonnegative eigenvalues for the systemsdiv(a(x)|∇u|p-2∇u)=b(x)|u|p-2uinΩ,|∇u|p-2∂u∂n=λc(x)|u|p-2uon∂Ω,by using the Ljusternic–Schnirelman principle, where Ω is a bounded domain in RN(N⩾2)

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom