Designing and evaluation of MERS-CoV siRNAs in HEK-293 cell line
Author(s) -
Sayed Sartaj Sohrab,
Sherif A. ElKafrawy,
Zeenat Mirza,
Ahmed M. Hassan,
Fatima Alsaqaf,
Esam I. Azhar
Publication year - 2020
Publication title -
journal of infection and public health
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.983
H-Index - 35
eISSN - 1876-035X
pISSN - 1876-0341
DOI - 10.1016/j.jiph.2020.12.018
Subject(s) - small interfering rna , cytotoxicity , population , hek 293 cells , transfection , virus , medicine , virology , cell culture , biology , genetics , in vitro , environmental health
BackgroundThe MERS-CoV was identified for the first time from Jeddah, Saudi Arabia in 2012 from a hospitalized patient. This virus has now been spread to 27 countries with a total of 858 deaths and 2,494 confirmed cases and has become a serious concern for the human population. Camels are well known for the transmission of the virus to the human population.MethodsIn this report, we have discussed the designing, prediction, and evaluation of potential siRNAs against the orf1ab gene of MERS-CoV. The online software was used to predict and design the siRNAs and finally, total twenty-one siRNA were filtered out from four hundred and sixty-two sIRNAs as per their scoring and specificity criteria. We have used only ten siRNAs to evaluate their cytotoxicity and efficacy by reverse transfection approach in HEK-293-T cell lines.ResultsBased on the results and data generated; no cytotoxicity was observed for any siRNAs at various concentrations in HEK-293-T cells. The ct value of real-time PCR showed the inhibition of viral replication in siRNA-1, 2, 4, 6, and 9. The data generated provided the preliminary information and encouraged us to evaluate the remaining siRNAs separately as well as in combination to analyses the replication of MERS-CoV inhibition in other cell lines.ConclusionBased on the results obtained; it is concluded that the prediction of siRNAs using online software resulted in the filtration of potential siRNAs with high accuracy and strength. This technology can be used to design and develop antiviral therapy not only for MERS-CoV but also against other viruses.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom