Secure and energy-efficient framework using Internet of Medical Things for e-healthcare
Author(s) -
Tanzila Saba,
Khalid Haseeb,
Imran Ahmed,
Amjad Rehman
Publication year - 2020
Publication title -
journal of infection and public health
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.983
H-Index - 35
eISSN - 1876-035X
pISSN - 1876-0341
DOI - 10.1016/j.jiph.2020.06.027
Subject(s) - body area network , computer science , energy consumption , computer security , overhead (engineering) , the internet , efficient energy use , health care , computer network , wireless , wireless sensor network , internet privacy , telecommunications , world wide web , engineering , electrical engineering , economics , economic growth , operating system
In various fields, the internet of things (IoT) gains a lot of popularity due to its autonomous sensors operations with the least cost. In medical and healthcare applications, the IoT devices develop an ecosystem to sense the medical conditions of the patients' such as blood pressure, oxygen level, heartbeat, temperature, etc. and take appropriate actions on an emergency basis. Using it, the healthcare-related data of patients is transmitted towards the remote users and medical centers for post-analysis. Different solutions have been proposed using Wireless Body Area Network (WBAN) to monitor the medical status of the patients based on low powered biosensor nodes, however, preventing increased energy consumption and communication costs are demanding and interesting problems. The issue of unbalanced energy consumption between biosensor nodes degrades the timely delivery of the patient's information to remote centers and gives a negative impact on the medical system. Moreover, the sensitive data of the patient is transmitting over the insecure Internet and prone to vulnerable security threats. Therefore, data privacy and integrity from malicious traffic are another challenging research issue for medical applications. This research article aims to a proposed secure and energy-efficient framework using Internet of Medical Things (IoMT) for e-healthcare (SEF-IoMT), which primary objective is to decrease the communication overhead and energy consumption between biosensors while transmitting the healthcare data on a convenient manner, and the other hand, it also secures the medical data of the patients against unauthentic and malicious nodes to improve the network privacy and integrity. The simulated results exhibit that the proposed framework improves the performance of medical systems for network throughput by 18%, packets loss rate by 44%, end-to-end delay by 26%, energy consumption by 29%, and link breaches by 48% than other states of the art solutions.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom