z-logo
Premium
[ST1]: A direct role for FMRP in activity‐dependent dendritic mRNA transport links filopodial‐spine morphogenesis to fragile X syndrome
Author(s) -
Dictenberg J.B.,
Antar L.N.,
Singer R.H.,
Bassell G.J.
Publication year - 2008
Publication title -
international journal of developmental neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.761
H-Index - 88
eISSN - 1873-474X
pISSN - 0736-5748
DOI - 10.1016/j.ijdevneu.2008.09.022
Subject(s) - morphogenesis , microbiology and biotechnology , fragile x syndrome , dendritic spine , neuroscience , biology , chemistry , genetics , gene , hippocampal formation
The function of local protein synthesis in synaptic plasticity and its dysregulation in fragile X syndrome (FXS) is well studied, however the contribution of regulated mRNA transport to this function remains unclear. We report a function for the fragile X mental retardation protein (FMRP) in the rapid, activity-regulated transport of mRNAs important for synaptogenesis and plasticity. mRNAs were deficient in glutamatergic signaling-induced dendritic localization in neurons from Fmr1 KO mice, and single mRNA particle dynamics in live neurons revealed diminished kinesis. Motor-dependent translocation of FMRP and cognate mRNAs involved the C terminus of FMRP and kinesin light chain, and KO brain showed reduced kinesin-associated mRNAs. Acute suppression of FMRP and target mRNA transport in WT neurons resulted in altered filopodia-spine morphology that mimicked the FXS phenotype. These findings highlight a mechanism for stimulus-induced dendritic mRNA transport and link its impairment in a mouse model of FXS to altered developmental morphologic plasticity.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom