z-logo
Premium
Necessity and redundancy of guidepost cells in the embryonic Drosophila CNS
Author(s) -
Whitington Paul M.,
Quilkey Carol,
Sink Helen
Publication year - 2004
Publication title -
international journal of developmental neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.761
H-Index - 88
eISSN - 1873-474X
pISSN - 0736-5748
DOI - 10.1016/j.ijdevneu.2004.01.001
Subject(s) - neuroscience , pathfinding , biology , axon guidance , axon , growth cone , embryonic stem cell , semaphorin , anatomy , receptor , graph , biochemistry , mathematics , discrete mathematics , shortest path problem , gene
Guidepost cells are specific cellular cues in the embryonic environment utilized by axonal growth cones in pathfinding decisions. In the embryonic Drosophila CNS the RP motor axons make stereotypic pathways choices involving distinct cellular contacts: (i) extension across the midline via contact with the axon and cell body of the homologous contralateral RP motoneuron, (ii) extension down the contralateral longitudinal connective (CLC) through contact with connective axons and longitudinal glia, and (iii) growth into the intersegmental nerve (ISN) through contact with ISN axons and the segmental boundary glial cell (SBC). We have now ablated putative guidepost cells in each of the CNS pathway subsections and uncovered their impact on subsequent RP motor axon pathfinding. Removal of the longitudinal glia or the SBC did not adversely affect pathfinding. This suggests that the motor axons either utilized the alternative axonal substrates, or could still make filopodial contact with the next pathway section's cues. In contrast, RP motor axons did require contact with the axon and soma of their contralateral RP homologue. Absence of this neuronal substrate frequently impeded RP axon outgrowth, suggesting that the next cues were beyond filopodial reach. Together these are the first direct ablations of putative guidepost cells in the CNS of this model system, and have uncovered both pathfinding robustness and susceptibility by RP axons in the absence of specific contacts.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here