Premium
The molecular clockwork of a protein‐based circadian oscillator
Author(s) -
Markson Joseph S.,
O'Shea Erin K.
Publication year - 2009
Publication title -
febs letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.593
H-Index - 257
eISSN - 1873-3468
pISSN - 0014-5793
DOI - 10.1016/j.febslet.2009.11.021
Subject(s) - clockwork , circadian clock , circadian rhythm , biophysics , adenosine triphosphate , biology , phosphorylation , chemistry , microbiology and biotechnology , biochemistry , physics , neuroscience , astronomy
The circadian clock of the cyanobacterium Synechococcus elongatus PCC 7942 is governed by a core oscillator consisting of the proteins KaiA, KaiB, and KaiC. Remarkably, circadian oscillations in the phosphorylation state of KaiC can be reconstituted in a test tube by mixing the three Kai proteins and adenosine triphosphate. The in vitro oscillator provides a well‐defined system in which experiments can be combined with mathematical analysis to understand the mechanism of a highly robust biological oscillator. In this Review, we summarize the biochemistry of the Kai proteins and examine models that have been proposed to explain how oscillations emerge from the properties of the oscillator's constituents.