Premium
Constitutive activity of a UV cone opsin
Author(s) -
Kono Masahiro
Publication year - 2006
Publication title -
febs letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.593
H-Index - 257
eISSN - 1873-3468
pISSN - 0014-5793
DOI - 10.1016/j.febslet.2005.12.002
Subject(s) - rhodopsin , opsin , transmembrane domain , chemistry , helix (gastropod) , pigment , mutant , salt bridge , schiff base , ligand (biochemistry) , retinal , stereochemistry , biophysics , retinaldehyde , protonation , amino acid , photochemistry , biochemistry , biology , receptor , ion , gene , ecology , organic chemistry , snail
Vertebrate visual pigment proteins contain a conserved carboxylic acid residue in the third transmembrane helix. In rhodopsin, Glu113 serves as a counterion to the positively charged protonated Schiff base formed by 11‐ cis retinal attached to Lys296. Activation involves breaking of this ion pair. In UV cone pigments, the retinyl Schiff base is unprotonated, and hence such a salt bridge is not present; yet the pigment is inactive in the dark. Mutation of Glu108, which corresponds to rhodopsin's Glu113, to Gln yields a pigment that remains inactive in the dark. The apoproteins of both the wild‐type and mutant, however, are constitutively active with the mutant being of significantly higher activity. Thus, one important role for preserving the negatively charged glutamate in the third helix of UV pigments is to maintain a less active opsin in a manner similar to rhodopsin. Ligand binding itself in the absence of a salt bridge is sufficient for deactivation.