Premium
Sumoylation of the nucleocapsid protein of severe acute respiratory syndrome coronavirus
Author(s) -
Li Frank Qisheng,
Xiao Han,
Tam James P.,
Liu D.X.
Publication year - 2005
Publication title -
febs letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.593
H-Index - 257
eISSN - 1873-3468
pISSN - 0014-5793
DOI - 10.1016/j.febslet.2005.03.039
Subject(s) - sumo protein , coronavirus , lysine , biology , arginine , phosphorylation , serine , mutant , amino acid , ubiquitin , microbiology and biotechnology , chemistry , biochemistry , gene , covid-19 , medicine , disease , infectious disease (medical specialty) , pathology
Severe acute respiratory syndrome coronavirus (SARS‐CoV) encodes a highly basic nucleocapsid (N) protein of 422 amino acids. Similar to other coronavirus N proteins, SARS‐CoV N protein is predicted to be phosphorylated and may contain nuclear localization signals, serine/arginine‐rich motif, RNA binding domain and regions responsible for self‐association and homo‐oligomerization. In this study, we demonstrate that the protein is posttranslationally modified by covalent attachment to the small ubiquitin‐like modifier. The major sumoylation site was mapped to the 62 lysine residue of the N protein. Further expression and characterization of wild type N protein and K62A mutant reveal that sumoylation of the N protein drastically promotes its homo‐oligomerization, and plays certain roles in the N protein‐mediated interference of host cell division. This is the first report showing that a coronavirus N protein undergoes posttranslational modification by sumoylation, and the functional implication of this modification in the formation of coronavirus ribouncleoprotein complex, virion assembly and virus–host interactions.